Functional comparisons of three glutamate transporter subtypes cloned from human motor cortex.
نویسندگان
چکیده
Reuptake plays an important role in regulating synaptic and extracellular concentrations of glutamate. Three glutamate transporters expressed in human motor cortex, termed EAAT1, EAAT2, and EAAT3 (for excitatory amino acid transporter), have been characterized by their molecular cloning and functional expression. Each EAAT subtype mRNA was found in all human brain regions analyzed. The most prominent regional variation in message content was in cerebellum where EAAT1 expression predominated. EAAT1 and EAAT3 mRNAs were also expressed in various non-nervous tissues, whereas expression of EAAT2 was largely restricted to brain. The kinetic parameters and pharmacological characteristics of transport mediated by each EAAT subtype were determined in transfected mammalian cells by radio-label uptake and in microinjected oocytes by voltage-clamp measurements. The affinities of the EAAT subtypes for L-glutamate were similar, with Km determinations varying from 48 to 97 microM in the mammalian cell assay and from 18 to 28 microM in oocytes. Glutamate uptake inhibitors were used to compare the pharmacologies of the EAAT subtypes. The EAAT2 subtype was distinguishable from the EAAT1/EAAT3 subtypes by the potency of several inhibitors, but most notably by sensitivity to kainic acid (KA) and dihydrokainic acid (DHK). KA and DHK potently inhibited EAAT2 transport, but did not significantly affect transport by EAAT1/EAAT3. Using voltage-clamp measurements, most inhibitors were found to be substrates that elicited transport currents. In contrast, KA and DHK did not evoke currents and they were found to block EAAT2-mediated transport competitively. This selective interaction with the EAAT2 subtype could be a significant factor in KA neurotoxicity. These studies provide a foundation for understanding the role of glutamate transporters in human excitatory neurotransmission and in neuropathology.
منابع مشابه
Kinetics of a human glutamate transporter
Currents mediated by a glutamate transporter cloned from human motor cortex were measured in Xenopus oocytes. In the absence of glutamate, voltage jumps induced Na(+)-dependent capacitive currents that were blocked by kainate, a competitive transport antagonist. The pre-steady-state currents can be described by an ordered binding model in which a voltage-dependent Na+ binding is followed by a v...
متن کاملAltered Functionality, Morphology, and Vesicular Glutamate Transporter Expression of Cortical Motor Neurons from a Presymptomatic Mouse Model of Amyotrophic Lateral Sclerosis.
Amyotrophic lateral sclerosis (ALS) is a lethal disorder characterized by the gradual degeneration of motor neurons in the cerebrospinal axis. Whether upper motor neuron hyperexcitability, which is a feature of ALS, provokes dysfunction of glutamate metabolism and degeneration of lower motor neurons via an anterograde process is undetermined. To examine whether early changes in upper motor neur...
متن کاملStructure, function, and regulation of human cystine/glutamate transporter in retinal pigment epithelial cells.
PURPOSE The purpose of this investigation was to provide evidence for the expression of the cystine/glutamate transporter (x(c)(-)) in the human retinal pigment epithelial cell line ARPE-19, clone the light chain of the transporter from an ARPE-19 cell cDNA library and study its function, and investigate the regulation of this transporter by nitric oxide (NO) in ARPE-19 cells. METHODS Uptake ...
متن کاملLocalization and function of five glutamate transporters cloned from the salamander retina
Glutamate is the major excitatory neurotransmitter in the vertebrate retina. Native glutamate transporters have been well characterized in several retinal neurons, particularly from the salamander retina. We have cloned five distinct glutamate transporters from the salamander retina and examined their localization and functional properties: sEAAT1, sEEAAT2A, sEAAT2B, sEAAT5A and sEAAT5B. sEAAT1...
متن کاملPartial Cloning and Nucleotide Sequencing of Glutamate Decarboxylase Gene Isoform 65 from Human Brain
Background: Gamma -aminobutyric acid (GABA), a non-protein amino acid acts as an inhibitory neurotransmitter in the central nervous system of mammalians. The glutamate decarboxylase (GAD) is responsible for the conversion of L-glutamate to GABA. The human brain has two isoforms of this enzyme, GAD65 and GAD67 that differ in molecular weight, amino acid sequence, antigenicity, cellular location ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 14 9 شماره
صفحات -
تاریخ انتشار 1994